New Phenolic Constituents from the Stems of Spatholobus suberectus

by Shuwei Zhang and Lijiang Xuan*

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, 555 Zu Chong Zhi Road, Shanghai 201203, P. R. China (phone: + 86-21-50272221; e-mail: ljxuan@mail.shcnc.ac.cn)

Three new phenolic compounds, $5 \cdot O \cdot (\beta \cdot \operatorname{apiosyl}{(1 \rightarrow 2)} \cdot O \cdot \beta \cdot \operatorname{xylopyranosyl})$ gentisic acid (1), $1 \cdot O \cdot (\beta \cdot \operatorname{apiosyl}{(1 \rightarrow 6)} \cdot O - \beta \cdot \operatorname{glucopyranosyl}) \cdot 3 \cdot O \cdot \operatorname{methylphloroglucinol}$ (2), and $15 \cdot O \cdot (\alpha \cdot \operatorname{rhamnopyranosyl})$ aloe-emodin (3), together with the known compound aloe emodin (4), were isolated from the stems of *Spatholobus suberectus*. Their structures were characterized by chemical and spectroscopic methods. The absolute configurations of the sugar units were not determined.

1. Introduction. – *Spatholobus suberectus* (Fabaceae) is known to produce red, juice-like cock blood when its bark is broken. Therefore, in traditional Chinese medicine (TCM), it is called '*ji xue teng*', which means 'cock-blood stems'. The drug is said to augment the proliferation of colony-forming-units granulocyte-macrophages (CFU-GM), increase the peripheral white blood-cells (WBC), the bone marrow mononuclear cells (BMC) quantity, and the granulopoiesis divisional index [1]. It may not only irritate hematopoiesis, but also exert reconstructive action to marrow micro-environment [2]. *S. suberectus* has been reported to contain flavonoids, emodins, triterpenoids, and steroids [3].

In the present work, we report the isolation and characterization of three new phenolic compounds (1-3) and of one known constituent, aloe-emodin (4), from *S. suberectus*. Their structures were mainly elucidated on the basis of spectroscopic and chemical methods.

2. Results and Discussion. – Compound **1** was obtained as a colorless powder. Its molecular formula was assigned as $C_{17}H_{22}O_{12}$, on the basis of the $[M-H]^-$ ion peak at m/z 417.1064 (calc. 417.1033) in the HR-ESI mass spectrum. The ¹³C-NMR and HMQC spectra of **1** (*Table 1*) showed the presence of 17 C-atoms, including one COOH, three CH₂, nine CH, and four quaternary C-atoms. Assignment of the aglycone moiety was achieved by comparison of ¹H- and ¹³C-NMR data with those of gentisic acid 5-*O*- β -D-xylopyranoside reported by *Fayos et al.* [4a]. The NMR spectra showed that **1** also contained an apiose (Api) and a xylose (Xyl) moiety [4]. In the ¹H-NMR spectrum, anomeric H-atoms appeared at δ (H) 5.40 (*d*, J=2.4 Hz, H–C(1'')) and 4.97 (*d*, J=6.5 Hz, H–C(1')), indicating an Api and a β -Xyl moiety, respectively.

The Xyl residue was attached to the aglycone at C(5), as confirmed by the HMBC correlation between H–C(1') at δ (H) 4.97 and C(5) at δ (C) 149.0 (*Figure*). The HMBC cross-peak between H–C(2') at δ (H) 3.60–3.62 and C(1'') at δ (C) 109.7 indicated that

^{© 2006} Verlag Helvetica Chimica Acta AG, Zürich

Arbitrary atom numbering; relative sugar configurations only

		•		
Atom ^b)	1		2	
	$\delta(C)$	$\delta(H)$	$\delta(C)$	$\delta(H)$
C(1)	118.6		160.9	
C(2) or H–C(2)	155.6		97.7	6.10 (d, J = 2.2)
H–C(3) or C(3)	117.5	6.91 (d, J = 8.9)	163.3	
H–C(4)	123.4	7.18 (dd, J = 8.9, 1.7)	98.6	6.05 (d, J = 2.2)
C(5)	149.0		159.9	
H–C(6)	118.1	7.53 (d, J = 1.6)	99.4	6.09 (d, J = 2.2)
1-COOH	174.6		_	
3-MeO	_		57.8	3.79(s)
H–C(1')	101.1	4.97 (d, J = 6.5)	102.5	4.86 (d, J = 7.4)
H–C(2')	78.8	3.60 - 3.62 (m)	75.2	3.57 (dd, J = 7.7, 8.9)
H–C(3')	75.9	3.60 - 3.66(m)	77.9	3.62(t, J=8.9)
H–C(4′)	69.3	3.67-3.74 (<i>m</i>)	72.0	3.52(t, J=8.7, 8.4)
H–C(5') or $CH_2(5')$	65.4	3.41 (t), 3.98 (dd)	77.3	3.73 - 3.82 (m)
CH ₂ (6')	_		69.9	4.07 (dd, J = 5.4, 14.3),
				3.76 (dd, J = 5.7, 14.3)
H–C(1")	109.7	5.40 (d, J = 2.4)	111.5	4.90 (d, J = 2.4)
H–C(2")	77.4	4.05 (d, J = 2.4)	79.1	4.0 (d, J = 2.5)
C(3'')	79.8		81.7	
CH ₂ (4'')	74.1	3.87 (d, J = 10.1)	76.0	4.03 (d, J = 10.2),
= > _ <		4.02(d, J=10.1)		3.89(d, J = 10.2)
CH ₂ (5")	64.3	3.62 (s)	66.1	3.79 (s)
^a) In case of overlappin	ng signals, no	multiplicities are given. b) A	Arbitrary nun	nbering.

Table 1. ¹*H* and ¹³*C*-*NMR* Data of **1** and **2**. At 400 MHz in D_2O ; δ in ppm, J in Hz^a).

the Api unit was connected to C(2') of the Xyl moiety, which was confirmed by a downfield shift of C(2') by 5.6 ppm compared to the corresponding resonance in gentisic acid 5-*O*- β -D-xylopyranoside [4a]. Therefore, compound **1** was identified as 5-*O*-[β -apiosyl- $(1 \rightarrow 2)$ -*O*- β -xylopyranosyl]gentisic acid¹).

Compound 2 was isolated as a brown-yellow powder. Its molecular formula was determined as $C_{18}H_{26}O_{12}$ by HR-ESI-MS, the $[M+H]^+$ ion peak being observed at m/z 435.1796 (calc. 435.1503). The ¹³C-NMR and HMQC spectra of **2** showed the presence of 18 C-atoms, including one MeO, three CH₂, ten CH, and four quaternary Catoms. Complete assignment of all 1H- and 13C-NMR resonances of the aglycone portion was achieved by comparison with the NMR data of $1-O-(\beta-D-glucopyranosyl)-3-O$ methylphloroglucinol reported by Sakar et al. [5]. The NMR spectra showed that 2 included an Api and a β -glucose (Glc) moiety [6]. The ¹H-NMR spectrum showed the anomeric resonances at $\delta(H)$ 4.90 (d, J=2.4 Hz, H-C(1'')) and 4.86 (d, J=7.4Hz, H-C(1')). The HMBC spectrum showed a correlation between H-C(1') of Glc and C(1) at δ (C) 160.9 of the aglycone, which indicated that the Glc unit was bonded to the aglycone. The HMBC cross-peak between H–C(1'') and C(6') at δ (C) 69.9 showed that the Api residue was attached in 6'-position to Glc, as corroborated by a downfield shift of C(6') by 7.3 ppm relative to the corresponding resonance in 1-O- $(\beta$ -D-glucopyranosyl)-3-O-methylphloroglucinol [5]. On the basis of the above data, compound **2** was, thus, identified as $1 - O - (\beta - apiosyl - (1 \rightarrow 6) - O - \beta - glucopyranosyl) - 3 -$ *O*-methylphloroglucinol¹).

Figure. Key HMBC correlations for 1-3

Compound **3** was obtained as a yellow powder. HR-ESI-MS showed the $[M + Na]^+$ ion peak at m/z 439.1005 (calc. 439.1005), corresponding to the molecular formula $C_{21}H_{20}O_9$. The IR spectrum of **3** showed absorption bands at 3392, 1670, and 1629 cm⁻¹, suggesting the presence of OH, and both free and H-bonded C=O functions. The UV spectrum indicated the presence of an anthraquinone moiety, with characteristic signals at λ_{max} 428, 285, 255, and 226 nm [7]. The ¹H- and ¹³C-NMR spectra of the aglycone of **3** were consistent with those of aloe emodin (**4**) reported by *Danielsen* and *Aksnes* [8]. The ¹H- and ¹³C-NMR spectra of **3** also exhibited a series of sugar signals at δ (H) 1.14–3.72 (δ (C) 17.9–70.4), the anomeric H-atom resonating at δ (H) 4.69 (d, J=1.3 Hz; δ (C) 100.0). By means of HMQC, HMBC, and ¹H, ¹H-COSY experiments,

¹) For systematic names, see the *Exper. Part.*

Atom ^a)	3		4	
	$\delta(C)$	$\delta(\mathrm{H})$	$\delta(C)$	$\delta(H)$
C(1)	161.5	-	161.6	-
H–C(2)	121.8	7.28 (d, J = 1.0)	120.6	7.3(s)
C(3)	148.8	_	153.7	-
H–C(4)	117.7	7.64 (d, J = 1.0)	117.1	7.65(s)
H–C(5)	119.4	7.69 (dd, J = 7.5, 0.8)	119.3	7.7 (dd, J = 7.7, 1.0)
H–C(6)	137.5	7.79 (dd, J = 7.8, 8.1)	137.3	7.8 (dd, J = 8.2, 7.7)
H–C(7)	124.5	7.36 (dd, J = 8.2, 0.8)	124.4	7.4 (dd, J = 7.2, 1.0)
C(8)	161.4	_	161.3	
C(9)	191.7	_	191.6	-
C(10)	181.4	_	181.4	-
C(11)	133.3	_	133.1	-
C(12)	115.9	_	115.8	-
C(13)	115.0	_	114.4	-
C(14)	133.3	_	133.3	-
CH ₂ (15)	66.9	4.72 (d, J = 14.1), 4.57 (d, J = 14.1)	62.0	4.62 (s)
H-C(1')	100.0	4.69(d, J=1.3)	_	_
H-C(2')	70.4	3.72 (dd, J=3.0, 1.4)	_	_
H–C(3')	70.8	3.50 (dd, J=9.4, 3.3)	_	-
H-C(4')	71.9	3.21 (d, J=9.4, 9.3)	_	-
H–C(5')	69.0	3.42 (dq, J=9.3, 6.3)	_	-
Me(6')	17.9	1.14 (d, J = 6.4)	_	-
^a) Arbitrary n	umbering.			

Table 2. ¹*H* and ¹³*C*-*NMR* Data of **3** and **4**. At 400 MHz in (D_6)DMSO; δ in ppm, J in Hz.

these signals could be assigned to a rhamnose (Rha) moiety [9]. The configuration of the anomeric center of Rha was concluded to be α , based on the characteristic ¹³C-NMR chemical shifts of C(3') (δ (C) 70.8) and C(5') (69.0). The HMBC cross-peak of **3** between CH₂(15) of the aglycone and C(1') of Rha indicated that the sugar unit was bonded to C(15) (*Figure*), as corroborated by a change in chemical shift from 62.0 to 66.9 ppm for C(15), when compared to **4**. Finally, acid hydrolysis of **3** with 2N aqueous HCl for 4 h at 90° produced **4** and Rha (identified by co-TLC). So, compound **3** was identified as 15-*O*-(α -rhamnopyranosyl)aloe-emodin¹).

Aloe emodin (4) was obtained in the form of red-brown needles. This compound had been isolated before from *Aloe* and *Rheum* species [10-13], but not from *S. sub-erectus*.

Experimental Part

General. Reverse-phase column chromatography (CC): MCI CHP20P gel (75–150 μ m; Mitsubishi Chemical Industries Co., Ltd.), HW-40F (30–60 μ m; Tosoh Co., Ltd.). TLC: silica gel GF₂₅₄; visualization under UV light, with I₂ vapor, or by spraying with anisaldehyde/H₂SO₄. UV Spectra: Shimadzu UV-2450

1244

spectrophotometer; λ_{max} (log ε) in nm. IR Spectra: *Hitachi 275-50* spectrometer; in cm⁻¹. ¹H- and ¹³C-NMR, COSY, HMQC, and HMBC Spectra: *Bruker DRX-400* spectrometer; δ in ppm, J in Hz. ESI-MS: *Finnigan LCQ-DECA* spectrometer; in *m/z*.

Plant Material. The stems of *S. suberectus* were collected from Guangxi Province, P. R. China, and were identified by *Yang He-Ming.* A voucher specimen was deposited at the Herbarium of the Shanghai Institute of Materia Medica, Chinese Academy of Science.

Extraction and Isolation. The air-dried stems of *S. suberectus* (5.0 kg) were powdered and extracted three times with 70% (ν/ν) aq. acetone at r.t. for 3 d each. After removal of the acetone in vacuum, the suspended residue was discarded by centrifugation. The aq. soln. was subjected to CC (*MCI* gel; MeOH/ H₂O gradient). The fraction eluted with H₂O was resubjected to CC (*HW-40F*; H₂O) to afford **1** (82 mg) and **2** (154 mg). The original fraction eluted with 40% aq. MeOH was subjected to CC (*HW-40F*; 20% aq. MeOH) to provide **3** (35 mg). Finally, the original fraction eluted with 100% MeOH afforded **4** (2130 mg).

Acidic Hydrolyses. Each sample (1 mg) was treated with 2_N aq. HCl at 90° for 4 h. The mixture was neutralized with NaHCO₃, and extracted with BuOH. The H₂O of the aq. portion was removed under reduced pressure, and the residue was extracted with pyridine. Then, the soln. was analyzed by TLC, co-eluting with authentic monosaccharide samples.

5-O-(β -Apiosyl-($1 \rightarrow 2$)-O- β -xylopyranosyl)gentisic Acid (=5-[(2-O- β -Apiosyl- β -xylopyranosyl)oxy]-2-hydroxybenzoic acid; **1**). Colorless, amorphous powder. UV (MeOH): 314 (3.50), 230 (3.78). IR (KBr): 3388, 2883, 1631, 1579, 1490, 1446. ¹H- and ¹³C-NMR: see *Table 1*. ESI-MS (neg.): 417 ([M-H]⁻), 153 ([M-C₁₀H₁₇O₈]⁻), 152 ([M-H-C₁₀H₁₇O₈]⁻), 108 ([M-H-C₁₀H₁₇O₈-COOH]⁻). HR-ESI-MS (neg.): 417.1064 ([M-H]⁻, C₁₇H₂₁O₁₂; calc. 417.1033).

1-O-(β -Apiosyl-(1 → 6)-O- β -glucopyranosyl)-3-O-methylphloroglucinol (=3-[(6-O- β -Apiosyl- β -glucopyranosyl)oxy]-6-methoxyphenol; **2**). Brown-yellow, amorphous powder. UV (MeOH): 267 (3.1), 225 (3.9). IR (KBr): 3396, 2933, 1606, 1460, 827. ¹H- and ¹³C-NMR: see *Table 1*. HR-ESI-MS (pos.): 435.1796 ([M+H]⁺, C₁₈H₂₇O⁺₁₂; calc. 435.1503).

15-O-(α-*Rhamnopyranosyl*)aloe-emodin (=1,8-Dihydroxy-3-{[(α-rhamnopyranosyl)oxy]methyl]anthracene-9,10-dione; **3**). Yellow, amorphous powder. UV (MeOH): 428 (3.74), 285 (3.63), 255 (3.98), 226 (4.36). IR (KBr): 3392, 1670, 1629. ¹H- and ¹³C-NMR: see *Table 2*. HR-ESI-MS (pos.): 439.1005 ([M+Na]⁺, C₂₁H₂₀NaO₉⁺; calc. 439.1005).

Aloe Emodin (4). Red-brown needles. UV (MeOH): 430, 286, 255, 225. IR (KBr): 3330, 1676, 1627, 1573. ¹H- and ¹³C-NMR: see *Table 2*. EI-MS: 270 (100), 252 (4), 241 (90), 224 (10), 213 (12), 139 (18).

REFERENCES

- [1] Y.-H. Chen, P. Liu, Z.-P. Zhang, M.-L. Chen, G.-Y. Chen, Chin. Pharm. J. 1999, 34, 305.
- [2] E.-Y. Su, H.-S. Chen, Chin. J. Integrative Med. 1997, 17, 213.
- [3] M. Lin, S.-Z. Li, Y. Ebizuka, U. Mikawa, Chin. Tradit. Herbal Drugs 1989, 20, 5; Q.-X. Yan, P. Li, D. Wang, J. Chin. Pharm. Univ. 2001, 32, 336.
- [4] a) J. Fayos, J. M. Belles, M. P. Lopez-Gresa, J. Primo, V. Conejero, *Phytochemistry* 2006, 67, 142; b)
 M. Hamburger, M. Gupta, K. Hostettmann, *Phytochemistry* 1985, 24, 2689.
- [5] M. K. Sakar, F. Petereit, A. Nahrstedt, Phytochemistry 1993, 33, 171.
- [6] M. Sugiyama, M. Kikuchi, Phytochemistry 1991, 30, 3147.
- [7] P. J. Muhtadi, M. J. R. Moss, Tetrahedron Lett. 1969, 10, 3751.
- [8] K. Danielsen, D. W. Aksnes, Magn. Reson. Chem. 1992, 30, 359.
- [9] R. Gunasegaran, K. Subramani, P. A. Parimala, A. G. Ramachandran Nair, B. Rodriguez, K. P. Madhusudanan, *Fitoterapia* 2001, 72, 201.
- [10] K.-H. Shin, W.-S. Woo, H.-S. Chung, C.-S. Shim, Nat. Prod. Sci. (Seoul) 1995, 1, 55.
- [11] Z.-Y. Xiao, D.-H. Chen, J.-Y. Si, G.-Z. Tu, L.-B. Ma, Acta Pharm. Sin. 2000, 35, 120.
- [12] N. Okamura, M. Asai, N. Hine, A. Yagi, J. Chromatogr. A 1996, 746, 225.
- [13] R. M. Liu, A. F. Li, A. L. Sun, J. Chromatogr. A 2004, 1052, 217.

Received March 22, 2006